Development of a State-wide Bicycle and Pedestrian Counting Program to Evaluate Crash Exposure in Iowa

STEVEN SPEARS, SCHOOL OF URBAN AND REGIONAL PLANNING, UNIVERSITY OF IOWA

STEVEN-SPEARS@UIOWA.EDU

CARA HAMANN, COLLEGE OF PUBLIC HEALTH, UNIVERSITY OF IOWA

CARA-HAMANN@UIOWA.EDU

This project is sponsored by the Iowa Department of Transportation, Traffic Safety Improvement Program

Purpose

- ► Establish a regional non-motorized traffic monitoring program to estimate bicycle and pedestrian distance traveled (BMT & PMT).
- Expand the program statewide.
- Evaluate
 - ► Trends in bicycle and pedestrian crash rates (exposure)
 - ▶ Effect of infrastructure on bicycle/pedestrian use
 - Crash hotspots and effectiveness of infrastructure improvements

Need

- ▶ Traffic counting programs for motorized vehicles began in the 1930s
 - ► Estimate vehicle volumes for roadway capacity modeling / traffic flows
 - ► Estimate Vehicle Distance Traveled (VMT)
 - ► Compute crash rates for vehicle travel
- No analogous programs exist for non-motorized (bicycle/pedestrian) traffic monitoring
 - No means of computing crash exposure rates (crashes/distance traveled) for non-vehicle road users

Project Description

- ▶ 33 counting sites (30 one-week, 3 permanent sites)
- ► Counts conducted August 2017 June 2019
- Sites selected to capture range of conditions:
 - ▶ Recreation / commuting / mixed
 - ▶ Urban / rural
 - ▶ Federal roadway classification (local / collector / arterial / trail)
- ▶ Counts used to estimate
 - annual average daily counts by type
 - ▶ Total bicycle/ pedestrian distance traveled by roadway segment
 - Crash rate for bicycle / pedestrian modes

Count Locations via google maps: https://drive.google.com/open?id =1ZnMlpicL5DHaXR5pAyMl6-WrkeKc_sRy&usp=sharing

Computing Bicycle Distance Traveled

► Calculate average daily bicycle (ADB) count by facility class

$$ADB = \frac{Sum \ of \ bicyclist \ counts}{Number \ of \ site - days \ counted}$$

► Compute daily and monthly factors (weights)

$$MF = \frac{Annual\ ADB}{Month\ ADB} \qquad DF = \frac{Month\ ADB}{Daily\ ADB}$$

Computing Bicycle Distance Traveled

▶ Multiply daily observed counts by factors to get adjusted daily bicycle counts

$$Estimated\ AADB = \frac{\sum (daily\ count\ x\ MF\ x\ DF)}{number\ of\ days\ counted}$$

- ▶ Repeat Average Annual Daily Bicycles (AADB) estimation for each facility class:
 - Arterial highway, collector, local, rural local, trail

Computing Bicycle Distance Traveled

Multiply AADB by segment length to obtain distance traveled (BDT) on that segment:

Segment $BDT = AADB \times segment length$

Sum BDT for all segment in the region to estimate total regional distance traveled:

$$\textit{Estimated Regional BDT} = \sum \textit{Segment BDT}$$

Regression Modeling (Phase III)

- ▶ More sophisticated per segment method (negative binomial regression)
- ▶ Full set of covariates
 - ▶ Road characteristics (posted speed, travel laves, traffic volume, bike/ped facility)
 - ▶ Weather/Season (temperature, precipitation, hours of daylight)
 - ▶ Land Use (employment/population density, intersection density)
- ▶ Before-after evaluation

Current Status and Future Directions

- Currently a rough estimate
 - ▶ Road classifications not particularly useful
 - ► Estimates are applied uniformly across road class
 - ▶ Used consistently, still provides information on trends in crash rate
- ► Analysis of before/after & crash hotspots
- ► Automated video counts / calibration
- More sophisticated modeling (regression) and scale up to statewide level (Phase III)

